Optic Chiasm Presentation of Semaphorin6D in the Context of Plexin-A1 and Nr-CAM Promotes Retinal Axon Midline Crossing
نویسندگان
چکیده
At the optic chiasm, retinal ganglion cells (RGCs) project ipsi- or contralaterally to establish the circuitry for binocular vision. Ipsilateral guidance programs have been characterized, but contralateral guidance programs are not well understood. Here, we identify a tripartite molecular system for contralateral RGC projections: Semaphorin6D (Sema6D) and Nr-CAM are expressed on midline radial glia and Plexin-A1 on chiasm neurons, and Plexin-A1 and Nr-CAM are also expressed on contralateral RGCs. Sema6D is repulsive to contralateral RGCs, but Sema6D in combination with Nr-CAM and Plexin-A1 converts repulsion to growth promotion. Nr-CAM functions as a receptor for Sema6D. Sema6D, Plexin-A1, and Nr-CAM are all required for efficient RGC decussation at the optic chiasm. These findings suggest a mechanism by which a complex of Sema6D, Nr-CAM, and Plexin-A1 at the chiasm midline alters the sign of Sema6D and signals Nr-CAM/Plexin-A1 receptors on RGCs to implement the contralateral RGC projection.
منابع مشابه
SoxC Transcription Factors Promote Contralateral Retinal Ganglion Cell Differentiation and Axon Guidance in the Mouse Visual System
Transcription factors control cell identity by regulating diverse developmental steps such as differentiation and axon guidance. The mammalian binocular visual circuit is comprised of projections of retinal ganglion cells (RGCs) to ipsilateral and contralateral targets in the brain. A transcriptional code for ipsilateral RGC identity has been identified, but less is known about the transcriptio...
متن کاملSlit1 and Slit2 Cooperate to Prevent Premature Midline Crossing of Retinal Axons in the Mouse Visual System
During development, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. In Drosophila, the Slit protein regulates midline axon crossing through repulsion. To determine the role of Slit proteins in RGC axon guidance, we disrupted Slit1 and Slit2, two of three known mouse Slit genes. Mice defective in either gene alone exhibited few RGC axon guidance defects, ...
متن کاملVEGF Signaling through Neuropilin 1 Guides Commissural Axon Crossing at the Optic Chiasm
During development, the axons of retinal ganglion cell (RGC) neurons must decide whether to cross or avoid the midline at the optic chiasm to project to targets on both sides of the brain. By combining genetic analyses with in vitro assays, we show that neuropilin 1 (NRP1) promotes contralateral RGC projection in mammals. Unexpectedly, the NRP1 ligand involved is not an axon guidance cue of the...
متن کاملThe optic chiasm as a midline choice point.
The mouse optic chiasm is a model for axon guidance at the midline and for analyzing how binocular vision is patterned. Recent work has identified several molecular players that influence the binary decision that retinal ganglion cells make at the optic chiasm, to either cross or avoid the midline. An ephrin-B localized to the midline, together with an EphB receptor and a zinc-finger transcript...
متن کاملUnder the Eye of Nr-CAM
Binocular vision relies upon the existence of contralateral and ispilateral projections from retinal ganglion cells. Contacts between visual axons and optic chiasm cells are critical for the sorting of crossed and uncrossed projections during development. In this issue of Neuron, a study by Williams et al. shows that the cell adhesion molecule Nr-CAM facilitates/promotes the decussation of cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 74 شماره
صفحات -
تاریخ انتشار 2012